511 research outputs found

    Validating Sample Average Approximation Solutions with Negatively Dependent Batches

    Full text link
    Sample-average approximations (SAA) are a practical means of finding approximate solutions of stochastic programming problems involving an extremely large (or infinite) number of scenarios. SAA can also be used to find estimates of a lower bound on the optimal objective value of the true problem which, when coupled with an upper bound, provides confidence intervals for the true optimal objective value and valuable information about the quality of the approximate solutions. Specifically, the lower bound can be estimated by solving multiple SAA problems (each obtained using a particular sampling method) and averaging the obtained objective values. State-of-the-art methods for lower-bound estimation generate batches of scenarios for the SAA problems independently. In this paper, we describe sampling methods that produce negatively dependent batches, thus reducing the variance of the sample-averaged lower bound estimator and increasing its usefulness in defining a confidence interval for the optimal objective value. We provide conditions under which the new sampling methods can reduce the variance of the lower bound estimator, and present computational results to verify that our scheme can reduce the variance significantly, by comparison with the traditional Latin hypercube approach

    Normalization factors for magnetic relaxation of small particle systems in non-zero magnetic field

    Get PDF
    We critically discuss relaxation experiments in magnetic systems that can be characterized in terms of an energy barrier distribution, showing that proper normalization of the relaxation data is needed whenever curves corresponding to different temperatures are to be compared. We show how these normalization factors can be obtained from experimental data by using the Tln(t/τ0)T \ln(t/\tau_0) scaling method without making any assumptions about the nature of the energy barrier distribution. The validity of the procedure is tested using a ferrofluid of Fe_3O_4 particles.Comment: 5 pages, 6 eps figures added in April 22, to be published in Phys. Rev. B 55 (1 April 1997

    A learning-based algorithm to quickly compute good primal solutions for Stochastic Integer Programs

    Full text link
    We propose a novel approach using supervised learning to obtain near-optimal primal solutions for two-stage stochastic integer programming (2SIP) problems with constraints in the first and second stages. The goal of the algorithm is to predict a "representative scenario" (RS) for the problem such that, deterministically solving the 2SIP with the random realization equal to the RS, gives a near-optimal solution to the original 2SIP. Predicting an RS, instead of directly predicting a solution ensures first-stage feasibility of the solution. If the problem is known to have complete recourse, second-stage feasibility is also guaranteed. For computational testing, we learn to find an RS for a two-stage stochastic facility location problem with integer variables and linear constraints in both stages and consistently provide near-optimal solutions. Our computing times are very competitive with those of general-purpose integer programming solvers to achieve a similar solution quality
    corecore